Copied to
clipboard

G = C32.27He3order 243 = 35

4th central stem extension by C32 of He3

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C32.27He3, C33.4C32, C3.7C3≀C3, C32⋊C93C3, (C3×He3).2C3, C3.6(He3.C3), C3.4(He3⋊C3), SmallGroup(243,6)

Series: Derived Chief Lower central Upper central Jennings

C1C33 — C32.27He3
C1C3C32C33C32⋊C9 — C32.27He3
C1C32C33 — C32.27He3
C1C32C33 — C32.27He3
C1C32C33 — C32.27He3

Generators and relations for C32.27He3
 G = < a,b,c,d,e | a3=b3=c3=d3=1, e3=b-1, ab=ba, ac=ca, dad-1=ab-1, eae-1=ac-1, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=ab-1c-1d >

9C3
9C3
9C3
9C3
3C32
3C32
3C32
3C32
3C32
3C32
3C32
9C9
9C32
9C32
9C9
9C9
9C32
3C33
3C3×C9
3He3
3He3
3He3
3C3×C9
3C3×C9

Smallest permutation representation of C32.27He3
On 81 points
Generators in S81
(1 37 14)(2 68 28)(3 56 52)(4 40 17)(5 71 31)(6 59 46)(7 43 11)(8 65 34)(9 62 49)(10 73 72)(12 21 61)(13 76 66)(15 24 55)(16 79 69)(18 27 58)(19 42 32)(20 64 47)(22 45 35)(23 67 50)(25 39 29)(26 70 53)(30 80 57)(33 74 60)(36 77 63)(38 51 78)(41 54 81)(44 48 75)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)
(1 77 23)(2 78 24)(3 79 25)(4 80 26)(5 81 27)(6 73 19)(7 74 20)(8 75 21)(9 76 22)(10 32 46)(11 33 47)(12 34 48)(13 35 49)(14 36 50)(15 28 51)(16 29 52)(17 30 53)(18 31 54)(37 63 67)(38 55 68)(39 56 69)(40 57 70)(41 58 71)(42 59 72)(43 60 64)(44 61 65)(45 62 66)
(1 23 77)(2 55 48)(3 52 59)(4 26 80)(5 58 51)(6 46 62)(7 20 74)(8 61 54)(9 49 56)(10 66 73)(11 50 30)(12 78 68)(13 69 76)(14 53 33)(15 81 71)(16 72 79)(17 47 36)(18 75 65)(19 32 45)(21 44 31)(22 35 39)(24 38 34)(25 29 42)(27 41 28)(37 64 57)(40 67 60)(43 70 63)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)

G:=sub<Sym(81)| (1,37,14)(2,68,28)(3,56,52)(4,40,17)(5,71,31)(6,59,46)(7,43,11)(8,65,34)(9,62,49)(10,73,72)(12,21,61)(13,76,66)(15,24,55)(16,79,69)(18,27,58)(19,42,32)(20,64,47)(22,45,35)(23,67,50)(25,39,29)(26,70,53)(30,80,57)(33,74,60)(36,77,63)(38,51,78)(41,54,81)(44,48,75), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,77,23)(2,78,24)(3,79,25)(4,80,26)(5,81,27)(6,73,19)(7,74,20)(8,75,21)(9,76,22)(10,32,46)(11,33,47)(12,34,48)(13,35,49)(14,36,50)(15,28,51)(16,29,52)(17,30,53)(18,31,54)(37,63,67)(38,55,68)(39,56,69)(40,57,70)(41,58,71)(42,59,72)(43,60,64)(44,61,65)(45,62,66), (1,23,77)(2,55,48)(3,52,59)(4,26,80)(5,58,51)(6,46,62)(7,20,74)(8,61,54)(9,49,56)(10,66,73)(11,50,30)(12,78,68)(13,69,76)(14,53,33)(15,81,71)(16,72,79)(17,47,36)(18,75,65)(19,32,45)(21,44,31)(22,35,39)(24,38,34)(25,29,42)(27,41,28)(37,64,57)(40,67,60)(43,70,63), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)>;

G:=Group( (1,37,14)(2,68,28)(3,56,52)(4,40,17)(5,71,31)(6,59,46)(7,43,11)(8,65,34)(9,62,49)(10,73,72)(12,21,61)(13,76,66)(15,24,55)(16,79,69)(18,27,58)(19,42,32)(20,64,47)(22,45,35)(23,67,50)(25,39,29)(26,70,53)(30,80,57)(33,74,60)(36,77,63)(38,51,78)(41,54,81)(44,48,75), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,77,23)(2,78,24)(3,79,25)(4,80,26)(5,81,27)(6,73,19)(7,74,20)(8,75,21)(9,76,22)(10,32,46)(11,33,47)(12,34,48)(13,35,49)(14,36,50)(15,28,51)(16,29,52)(17,30,53)(18,31,54)(37,63,67)(38,55,68)(39,56,69)(40,57,70)(41,58,71)(42,59,72)(43,60,64)(44,61,65)(45,62,66), (1,23,77)(2,55,48)(3,52,59)(4,26,80)(5,58,51)(6,46,62)(7,20,74)(8,61,54)(9,49,56)(10,66,73)(11,50,30)(12,78,68)(13,69,76)(14,53,33)(15,81,71)(16,72,79)(17,47,36)(18,75,65)(19,32,45)(21,44,31)(22,35,39)(24,38,34)(25,29,42)(27,41,28)(37,64,57)(40,67,60)(43,70,63), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81) );

G=PermutationGroup([[(1,37,14),(2,68,28),(3,56,52),(4,40,17),(5,71,31),(6,59,46),(7,43,11),(8,65,34),(9,62,49),(10,73,72),(12,21,61),(13,76,66),(15,24,55),(16,79,69),(18,27,58),(19,42,32),(20,64,47),(22,45,35),(23,67,50),(25,39,29),(26,70,53),(30,80,57),(33,74,60),(36,77,63),(38,51,78),(41,54,81),(44,48,75)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78)], [(1,77,23),(2,78,24),(3,79,25),(4,80,26),(5,81,27),(6,73,19),(7,74,20),(8,75,21),(9,76,22),(10,32,46),(11,33,47),(12,34,48),(13,35,49),(14,36,50),(15,28,51),(16,29,52),(17,30,53),(18,31,54),(37,63,67),(38,55,68),(39,56,69),(40,57,70),(41,58,71),(42,59,72),(43,60,64),(44,61,65),(45,62,66)], [(1,23,77),(2,55,48),(3,52,59),(4,26,80),(5,58,51),(6,46,62),(7,20,74),(8,61,54),(9,49,56),(10,66,73),(11,50,30),(12,78,68),(13,69,76),(14,53,33),(15,81,71),(16,72,79),(17,47,36),(18,75,65),(19,32,45),(21,44,31),(22,35,39),(24,38,34),(25,29,42),(27,41,28),(37,64,57),(40,67,60),(43,70,63)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)]])

C32.27He3 is a maximal subgroup of   C3.3C3≀S3  (C3×He3).C6  C32⋊C96S3

35 conjugacy classes

class 1 3A···3H3I···3P9A···9R
order13···33···39···9
size11···19···99···9

35 irreducible representations

dim1113333
type+
imageC1C3C3He3C3≀C3He3.C3He3⋊C3
kernelC32.27He3C32⋊C9C3×He3C32C3C3C3
# reps16226126

Matrix representation of C32.27He3 in GL6(𝔽19)

010000
001000
100000
000700
000910
00014011
,
700000
070000
007000
000100
000010
000001
,
1100000
0110000
0011000
0001100
0000110
0000011
,
700000
010000
0011000
000700
000910
0001701
,
121218000
1288000
18818000
0009130
00017101
000020

G:=sub<GL(6,GF(19))| [0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,7,9,14,0,0,0,0,1,0,0,0,0,0,0,11],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[7,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,9,17,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,18,0,0,0,12,8,8,0,0,0,18,8,18,0,0,0,0,0,0,9,17,0,0,0,0,13,10,2,0,0,0,0,1,0] >;

C32.27He3 in GAP, Magma, Sage, TeX

C_3^2._{27}{\rm He}_3
% in TeX

G:=Group("C3^2.27He3");
// GroupNames label

G:=SmallGroup(243,6);
// by ID

G=gap.SmallGroup(243,6);
# by ID

G:=PCGroup([5,-3,3,-3,-3,3,121,186,542,457]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=1,e^3=b^-1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1,e*a*e^-1=a*c^-1,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*b^-1*c^-1*d>;
// generators/relations

Export

Subgroup lattice of C32.27He3 in TeX

׿
×
𝔽